Distributed File Systems

GFS, HDSF, Ceph

Content

- What is a distributed file system?
- GFS Google File System
- HDFS Hadoop Distributed File System
- Ceph RedHat Distributed File System

Content

- What is a distributed file system?
- GFS Google File System
- HDFS Hadoop Distributed File System
- Ceph RedHat Distributed File
 System

What is a distributed file system?

The difference between a distributed file system and a distributed data store is that a distributed file system allows files to be accessed using the same interfaces and semantics as local files - e.g. mounting/unmounting, listing directories, read/write at byte boundaries, system's native permission model. Distributed data stores, by contrast, require using a different API or library and have different semantics (most often those of a database).

GFS – Google File System

- Centrally managed distributed file system for Google's internal use
- Developed from BigFiles by Larry and Sergey
- Not implemented in kernel, but rather a user space library
- Intra data centre file system
- New version in the works ...

GFS – Motivation

- Fault tolerance
 - Google is using commodity parts with relatively high failure rate
 - Software quality cannot be guaranteed SW errors
 - High degree of shared resources: power supplies, switches, etc.
- Client guarantees
 - High availability scale to infinity
 - Consistency
 - Concurrent write and read from multiple clients
- Infrastructure management
 - High sustained bandwidth is more important than latency.

GFS - Dimensions

- Multiple GFS instances in a data centre
- Millions of files
 - 100 MB is the norm
 - Multi GB files are common
 - Small files not common
- Aggregately storing terabytes of data
- 100's of storage nodes
- Concurrently accessed by 100's of clients

GFS – Assumptions

- High HW and SW failure rate
- Modest number of large files
- Large streaming reads 1 MB per operation
- Few and small random reads KB per operation
- Large sequential append writes
- Append to the end of a chunk is far more likely than writes that overwrite existing data

GFS – Guarantees

- Consistent
 All clients will see the same data,
 regardless of which replicas they read from
- High availability
- Atomic write

GFS – Entities

- Chunk
- Chunk server
- Master
- Client

Chunkserver

Chunk

GFS Master

Application

GFS Client

GFS – Entities – Chunk

- 64 MB linux file Most files are larger than 100 MB
- Requires 64 Bytes of metadata in the master
- Stored and replicated on multiple chunk servers

GFS – Entities – Chunkserver

- Stores chunks on local disk(s)
- Any machine in the data centre, heterogenous
- Performs checksum on each block
- Checksum and chunk map is stored in memory
- Communicates with master

GFS – Entities – Master

- File system metadata Stored in memory
 - Namespace
 - Access control information
 - Imposes read and write locks
 - File to chunk mapping
 - Chunk location
- Lookup table mapping full pathnames with metadata. Stored in memory
- No per-directory data structure or aliasing
- Handles file permutations
- Periodically scans namespace for changes,
 loss of chunkservers, deleted files, etc. using heartbeat messages
- Ensures fault tolerance
- There can be only one, for now

GFS – Entities – Client

- Application, value adder, revenue generator
- Map Reduce, Google Services
- Consumes and produces data
 - i.e. reads and writes to the file system
- Own checksum
- Has no ability to report error in file system
- Caches metadata from master

GFS – Architecture

Application

GFS Client

Application

GFS Client

Chunkserver

Chunk

Chunk

Chunk

GFS – Architecture

Application

GFS Client

Blade **Application GFS Master GFS Client** Chunkserver Chunkserver Chunk Chunk

GFS – Redundancy

- 1. Client asks master for replicas (Namespace)
- 2. Master replies with replicas (IP addresses and offsets)
- 3. Client reads from random replica
- 4. If it fails to read, it retires from a different replica

Application

GFS Client

GFS Master

- 1. Client asks master for replicas (Namespace)
- 2. Master replies with replicas (IP addresses and offsets)
- 3. Client reads from random replica
- 4. If it fails to read, it retires from a different replica

- 1. Client asks master for replicas (Namespace)
- 2. Master replies with replicas (IP addresses and offsets)
- 3. Client reads from random replica
- 4. If it fails to read, it retires from a different replica

- 1. Client asks master for replicas (Namespace)
- 2. Master replies with replicas (IP addresses and offsets)
- 3. Client reads from random replica
- 4. If it fails to read, it retires from a different replica

Replica A

Replica B

Replica C

GFS – Read

- 1. Client asks master for replicas (Namespace)
- 2. Master replies with replicas (IP addresses and offsets)
- 3. Client reads from random replica
- 4. If it fails to read, it retires from a different replica

GFS – Read

- 1. Client asks master for replicas (Namespace)
- 2. Master replies with replicas (IP addresses and offsets)
- 3. Client reads from random replica
- 4. If it fails to read, it retires from a different replica

GFS – Read

- 1. Client asks master for replicas (Namespace)
- 2. Master replies with replicas (IP addresses and offsets)
- 3. Client reads from random replica
- 4. If it fails to read, it retires from a different replica

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

Application

GFS Client

GFS Master

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

Primary Replica

Secondary Replica B

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

Secondary Replica A

> Primary Replica

Secondary Replica B

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

- 1. Client asks master for primary chunkserver (Namespace)
- 2. Master evaluated lease validity
- 3. Master replies with identity of the primary (IP address)

 Client caches data
- 4. Client pushed data to closest chunkserver
- 5. Client forwards write requests

GFS – Fault tolerance – Master

- Does not distinguish between normal and abnormal termination.
- Accessed using it's canonical name
- Log file is key
 - Replicated to multiple machines
 - Defines the order of concurrent operations
 - Log file only only persistent record of meta data
 - Fast recovery by replaying log file from checkpoint

GFS – Fault tolerance – Chunkserver failure

- Chunk are replicated across multiple chunkservers, not RAID
- Chunks are split into 64KB blocks with 32bit checksum stored in memory
- Not discovered until when master probes chunkserver
 - New replica created when not responding

GFS – Maintenance (I)

- Garbage collection
 - Performed during heartbeat
 - File renamed when deleted, up to client to know the new name
 - Action can be undone
 - Resources are reclaimed lazily, with a user configurable interval
 - Google uses a 3-day grace period
 - Orphan chunks are removed
 - Anything not know to the master is "garbage"

GFS – Maintenance (II)

Replica placement

- Simple default policy, replicas across multiple racks
- Equalise disk utilisation across chunk servers

Creating, re-replication, and rebalancing

- Limit number of recent creations on each chunkserver
- Cloning done to closest suitable chunkserver
- Periodically, graceful rebalancing

GFS – User tuneable parameters

- Number of replicas
- Chunksever placement policy
- Client and chunkservers co-locality policy
- Lease timeout
- Rebalancing periodicity
- Garbage collection periodicity

HDFS – Hadoop Distributed File System

- Decoupled metadata and data store
- One metadata store
- Locality though the client and replica placement policies
- More signalling: storage capacity, status HB, etc.
- Greater configurability, block sizes, fault tolerance
- Fault tolerance through multiple replicas
- Obviously designed for Hadoop workloads

HDFS – Entities

GFS	HDFS	
Chunk	Block	
Chunkserver	Datanode	
Master	Namenode	
Client	Client	
-	CheckpointNode	
-	BackupNode	

Data Node

Block

Name Node

Application

HDSF Client

HDFS – Architecture

HDFS – Fault tolerance - NameNode

- CheckpointNode
 - Keeps a persistent replica of the journal
 - Truncates journal for faster recovery
- BackupNode
 - Same as CheckpointNode
 - Can act as a read only NameNode, requires a load balancer

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

Application

HDFS Client

NameNode

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

Replica B

Replica C

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

- 1. Client asks NameNode for replicas
- 2. NameNode evaluated lease validity
- 3. NameNode replies with identity of the Replicas (IP address)
- 4. Client pipelines data to replicas from the closest
- 5. Client send "close file"
- 6. Last replica responds
- 7. Lease ends

- Client always tries to read from the DataNode with least separation. Based on IP addresses.
- Does not take into account DataNode disk utilisation
- When creating a new file
 - 1st replica is placed on the same node as the client
 - 2nd and 3rd replicas are placed on different racks
 - No rack contains more than two replicas
 - No DataNode contains more than one replica

Ceph

- Integrated into Linux kernel, transparent to application
- Maintained by RedHat
- Found in Fedora, Ubuntu, Debian, etc.
- More general than the other two
- Scalable through higher degree of distribution
 - Multiple metadata nodes, partitioned namespace
 - Multiple data/storage nodes
- Pseudo-random block placement
- Trusting client capability implementation

Ceph – Entities

GFS	HDFS	Ceph
Chunk	Block	Block
Chunkserver	Datanode	Storage cluster
Master	Namenode	Metadata server
Client	Client	Client
-	CheckpointNode	-
-	BackupNode	-
-	-	System monitor

Storage cluster

Block

Metadata server

Linux OS

Client

Ceph – Architecture

Ceph – Metadata (CRUSH)

Controlled Replication Under Scalable Hashing

Ceph – Namespace partitioning

Busy directory hashed across many MDS's

Conclusion

- GFS
 - Bespoke, Google centric
 - Stereotypically google-simple
 - Not very adaptive
- HDFS
 - More control signalling
 - More tuning parameters
- Ceph
 - Most general
 - Higher degree of distribution
 - Most configurable but also most adaptive