Distributed File
Systems

GFS, HDSF, Ceph

Content

 What is a distributed file
system?

* GFS — Google File System

* HDFS — Hadoop Distributed File
System

* Ceph — RedHat Distributed File
System

Content

 What is a distributed file
system?

* GFS — Google File System

* HDFS — Hadoop Distributed File
System

* Ceph — RedHat Distributed File
System

What is a distributed file system?

The difference between a distributed file system and

a distributed data store is that a distributed file system
allows files to be accessed using the same interfaces and
semantics as local files - e.g. mounting/unmounting,
listing directories, read/write at byte boundaries, system's
native permission model. Distributed data stores, by
contrast, require using a different APl or library and have
different semantics (most often those of a database).

GFS — Google File System

* Centrally managed distributed file system for Google’s
internal use

* Developed from BigFiles by Larry and Sergey

* Not implemented in kernel,
but rather a user space library

* Intra data centre file system
* New version in the works ...

GFS — Motivation

* Fault tolerance
* Google is using commodity parts with relatively high failure rate

» Software quality cannot be guaranteed - SW errors

* High degree of shared resources: power supplies, switches, etc.
* Client guarantees

* High availability - scale to infinity

* Consistency

* Concurrent write and read from multiple clients

* Infrastructure management
* High sustained bandwidth is more important than latency.

GFS — Dimensions

* Multiple GFS instances in a data centre

 Millions of files

e 100 MB is the norm
* Multi GB files are common
 Small files not common

* Aggregately storing terabytes of data
* 100’s of storage nodes
* Concurrently accessed by 100’s of clients

GFS — Assumptions

 High HW and SW failure rate
* Modest number of large files
* Large streaming reads — 1 MB per operation

* Few and small random reads — KB per operation
e Large sequential append writes

* Append to the end of a chunk is far more likely than
writes that overwrite existing data

GFS — Guarantees

* Consistent
All clients will see the same data,
regardless of which replicas they read from

* High availability
e Atomic write

GFS — Entities Chunkserver

* Chunk
* Chunk server

* Master
e Client

Application

| Grsclient |

GFS — Entities — Chunk

* 64 MB linux file — Most files are larger than 100 MB
* Requires 64 Bytes of metadata in the master
 Stored and replicated on multiple chunk servers

File Padding
< >« >
<< >

64 MB

GFS — Entities — Chunkserver

 Stores chunks on local disk(s)

* Any machine in the data centre, heterogenous
* Performs checksum on each block

* Checksum and chunk map is stored in memory
e Communicates with master

fu] - °

. Chunkserver

S @

GFS — Entities — Master

* File system metadata — Stored in memory
* Namespace
* Access control information
* Imposes read and write locks
* File to chunk mapping
* Chunk location

* Lookup table mapping full pathnames with metadata. Stored in memory
* No per-directory data structure or aliasing
*Handles file permutations

* Periodically scans namespace for changes,
oss of chunkservers, deleted files, etc. using heartbeat messages

* Ensures fault tolerance
*There can be only one, for now

GFS — Entities — Client

* Application, value adder,

revenue generator Application
* Map Reduce, Google Services
* Consumes and produces data

* j.e. reads and writes to the file system ”

* Own checksum
* Has no ability to report error in file system
 Caches metadata from master

GFS — Architecture

Application

| GrFsclient |

GFS — Architecture

Application

| GrFsclient |

GFS — Redundancy

< Chunk Mappings |

Shadow |

Master

File 1
Chunk 1

Chunk Server

File 1
Chunk 2

!
|
|
%

File 2
Chunk 1

File 1
Chunk 2

Chunk Server

File 1
Chunk 1

!
|
|
|

File 2
Chunk 2

File 1
Chunk 2

Chunk Server

File 2
Chunk 1

File 2
Chunk 2

redundant

15

GFS — Read

1. Client asks master for replicas
(Namespace)

2. Master replies with replicas (IP
addresses and offsets)

3. Client reads from random replica

4. If it fails to read, it retires from a
different replica

Application

GFS Client

GFS — Read

1. Client asks master for replicas
(Namespace)

2. Master replies with replicas (IP
addresses and offsets)

3. Client reads from random replica

4. If it fails to read, it retires from a
different replica

Application

GFS — Read

1. Client asks master for replicas
(Namespace)

2. Master replies with replicas (IP
addresses and offsets)

3. Client reads from random replica

4. If it fails to read, it retires from a
different replica

. Application

GFS — Read

1. Client asks master for replicas
(Namespace)

2. Master replies with replicas (IP
addresses and offsets)

3. Client reads from random replica

4. If it fails to read, it retires from a
different replica

~ Aoplication

] GFsclient |

GFS — Read

1. Client asks master for replicas
(Namespace)

2. Master replies with replicas (IP
addresses and offsets)

3. Client reads from random replica

4. If it fails to read, it retires from a
different replica

~ Aoplication

] GFsclient |

GFS — Read

1. Client asks master for replicas
(Namespace)

2. Master replies with replicas (IP
addresses and offsets)

3. Client reads from random replica

4. If it fails to read, it retires from a
different replica

GFS — Read

1. Client asks master for replicas
(Namespace)

2. Master replies with replicas (IP
addresses and offsets)

3. Client reads from random replica

4. If it fails to read, it retires from a
different replica

GFS — Write (per chunk)

1. Client asks master for primary Appllcatlon
chunkserver (Namespace) ' '

2. Master evaluated lease validity GFS Client

3. Master replies with identity of the
primary (IP address)
Client caches data

4. Client pushed data to closest
chunkserver

5. Client forwards write requests

GFS — Write (per chunk)

1. Client asks master for primary
chunkserver (Namespace)

Application

2. Master evaluated lease validity

3. Master replies with identity of the
primary (IP address)
Client caches data

4. Client pushed data to closest
chunkserver

5. Client forwards write requests

GFS — Write (per chunk)

Application

1. Client asks master for primary
chunkserver (Namespace)

2. Master evaluated lease validity

3. Master replies with identity of the
primary (IP address)

: . Secondary
Client caches data Replica A
4. Client pushed data to C|osest
chunkserver g
: : . Primary
5. Client forwards write requests . Replica
Secondary

Replica B

GFS — Write (per chunk)

1. Client asks master for primary Application

chunkserver (Namespace)
| GFSClient |

2. Master evaluated lease validity

3. Master replies with identity of the
primary (IP address)

: . Secondary
Client caches data Replica A
4. Client pushed data to C|osest
chunkserver g
: : . Primary
5. Client forwards write requests . Replica
Secondary

Replica B

GFS — Write (per chunk)

1. Client asks master for primary
chunkserver (Namespace)

~ Aoplication

] GFsclient |

2. Master evaluated lease validity

3. Master replies with identity of the
primary (IP address)

: . Secondary
Client caches data ReplicaA |
4. Cllent pushed data tO C|05e5t R v
chunkserver gl
: : . Primary
5. Client forwards write requests . Replica
Secondary

Replica B

GFS — Write (per chunk)

1. Client asks master for primary

Application
chunkserver (Namespace)
2. Master evaluated lease validity
3. Master replies with identity of the . A
primary (IP address) Secondary
Client caches data ReplicaA |
4. Client pushed data to Closest PesmssssmssEEsEs v -
chunkserver el
: : . Primary
5. Client forwards write requests Replica |
Secondary

Replica B

GFS — Write (per chunk)

1. Client asks master for primary

Application
chunkserver (Namespace)
2. Master evaluated lease validity
3. Master replies with identity of the . A
primary (IP address) Secondary
Client caches data ReplicaA |
4. Client pushed data to Closest PesmssssmssEEsEs v -
chunkserver | T
: : . Primary
5. Client forwards write requests Replica |
Secondary

Replica B

GFS — Write (per chunk)

1. Client asks master for primary

Application
chunkserver (Namespace)

2. Master evaluated lease validity

3. Master replies with identity of the

primary (IP address) secondary

Client caches data Replica A

4. Client pushed data to Closest v -

Chunkserver :

' - . Primary

5. Client forwards write requests Replica |
Secondary

Replica B

GFS — Write (per chunk)

1. Client asks master for primary

Application
chunkserver (Namespace)

2. Master evaluated lease validity

3. Master replies with identity of the
primary (IP address)

. Secondary
Client caches data

Replica A

4. Client pushed data to closest

chunkserver .
Primary

5. Client forwards write requests Replica

Secondary
Replica B

GFS — Write (per chunk)

1. Client asks master for primary

Application
chunkserver (Namespace)

2. Master evaluated lease validity

3. Master replies with identity of the
primary (IP address)

. Secondary
Client caches data

Replica A

4. Client pushed data to closest

chunkserver .
Primary

5. Client forwards write requests Replica

Secondary
Replica B

GFS — Write (per chunk)

1. Client asks master for primary

Application
chunkserver (Namespace)

2. Master evaluated lease validity

3. Master replies with identity of the
primary (IP address)

. Secondary
Client caches data

Replica A

4. Client pushed data to closest

chunkserver .
Primary

5. Client forwards write requests Replica

Secondary
Replica B

GFS — Fault tolerance — Master

* Does not distinguish between normal and abnormal
termination.

* Accessed using it’s canonical name
* Log file is key

* Replicated to multiple machines
e Defines the order of concurrent operations

* Log file only only persistent record of meta data
e Fast recovery by replaying log file from checkpoint

GFS — Fault tolerance — Chunkserver failure

* Chunk are replicated across multiple chunkservers,
not RAID

* Chunks are split into 64KB blocks with 32bit checksum
stored in memory

* Not discovered until when master probes chunkserver
* New replica created when not responding

GFS — Maintenance (I)

* Garbage collection

* Performed during heartbeat

* File renamed when deleted, up to client to know the new name
* Action can be undone

e Resources are reclaimed lazily, with a user configurable interval
* Google uses a 3-day grace period

* Orphan chunks are removed

* Anything not know to the master is “garbage”

GFS — Maintenance (Il

* Replica placement
e Simple default policy, replicas across multiple racks
e Equalise disk utilisation across chunk servers

* Creating, re-replication, and rebalancing
 Limit number of recent creations on each chunkserver
* Cloning done to closest suitable chunkserver
* Periodically, graceful rebalancing

GFS — User tuneable parameters

* Number of replicas

* Chunksever placement policy

* Client and chunkservers co-locality policy
* Lease timeout

* Rebalancing periodicity

* Garbage collection periodicity

HDFS — Hadoop Distributed File System

* Decoupled metadata and data store
* One metadata store

* Locality though the client and replica placement
policies

* More signalling: storage capacity, status HB, etc.

* Greater configurability, block sizes, fault tolerance
* Fault tolerance through multiple replicas

* Obviously designed for Hadoop workloads

HDFS — Entities

Chunk Block

Chunkserver Datanode

Master Namenode

Client Client

- CheckpointNode
- BackupNode Application

HDSF Client

HDFS — Architecture

.
5 A
.

“

e
“““
. "
% "
% ®
P

.
. .
%4 .
‘‘‘‘‘
% A

Application

HDFS Client

HDFS — Fault tolerance - NameNode

* CheckpointNode
* Keeps a persistent replica of the journal
* Truncates journal for faster recovery

* BackupNode
 Same as CheckpointNode

* Can act as a read only NameNode,
requires a load balancer

HDFS — Write

1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”
6. Last replica responds

7. Lease ends

. Application

] HDFs Client |

HDFS — Write

1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”
6. Last replica responds

7. Lease ends

. Application

| HDFs Client —>

HDFS — Write

1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”
6. Last replica responds

7. Lease ends

. Application

| HDFs Client —>

HDFS — Write

1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”
6. Last replica responds

7. Lease ends

. Application

] HDFs Client |

HDFS — Write

1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”
6. Last replica responds

7. Lease ends

. Application

] HDFs Client |

HDFS — Write

1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”
6. Last replica responds

7. Lease ends

Application

HDFS — Write
Application
1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”

6. Last replica responds

7. Lease ends

HDFS — Write
Application
1. Client asks NameNode for replicas

2. NameNode evaluated lease
validity

3. NameNode replies with identity of
the Replicas (IP address)

4. Client pipelines data to replicas
from the closest

5. Client send “close file”

6. Last replica responds

7. Lease ends

HDFS — Block placement

* Client always tries to read from the DataNode with
least separation. Based on IP addresses.

* Does not take into account DataNode disk utilisation
* When creating a new file

* 1st replica is placed on the same node as the
client

* 2nd and 3rd replicas are placed on different racks
* No rack contains more than two replicas
* No DataNode contains more than one replica

HDFS — Block placement

Rack 1 Rack 2 Rack 3 Rack 4

HDFS — Block placement

Rack 1 Rack 2 Rack 3 Rack 4

Replica 1

HDFS — Block placement

Rack 1 Rack 2 Rack 3 Rack 4

Replica 1

Replica 2

HDFS — Block placement

Rack 1 Rack 2 Rack 3 Rack 4

Replica 1

Replica 2

HDFS — Block placement

Rack 1 Rack 2 Rack 3 Rack 4

Replica 1

Replica 3

Replica 2

HDFS — Block placement

Rack 1 Rack 2 Rack 3 Rack 4

Replica 1

Replica 3

Replica 2

HDFS — Block placement

Rack 1

Replica 1

Rack 2

Rack 3

Replica 3

Rack 4

Replica 2

Replica 4

HDFS — Block placement

Rack 1 Rack 2 Rack 3 Rack 4

C Replica 1 Replica 3

Replica 2

Replica 4

Ceph

* Integrated into Linux kernel, transparent to application
* Maintained by RedHat
 Found in Fedora, Ubuntu, Debian, etc.
* More general than the other two
 Scalable through higher degree of distribution
* Multiple metadata nodes, partitioned namespace

* Multiple data/storage nodes
* Pseudo-random block placement
* Trusting client capability implementation

Ceph — Entities
G | Hors | ceph

Chunk Block Block

Chunkserver Datanode Storage cluster

Master Namenode Metadata server Metadata
Client Client Client server

- CheckpointNode -

) BackupNode T —
- - System monitor Linux OS

Ceph — Architecture

”“::v““l | ;::
“““:‘““‘ .."u. A
* “‘ L. :
; Inux OS ;
Storage e Eemmme Metadata

cluster 4_ Ceph Client — server

Ceph — Metadata (CRUSH)

Controlled Replication Under Scalable Hashing

File '
> (ino,0n0) —» 0id
Objects
hash(oid) & mask — pgid
(=1

CRUSH(pgid) — (0sd1, 0sd2)

OSDs \
(groupedby NN ENEES
failure domain) ===t et s

Ceph — Namespace partitioning

Root

MDS 0 MDS 1 MDS 2 MDS 3 MDS 4

| B | | D
Busy directory hashed across many MDS's

Conclusion

e GFS
* Bespoke, Google centric
 Stereotypically google-simple
* Not very adaptive

 HDFS
 More control signalling
 More tuning parameters

e Ceph
* Most general
* Higher degree of distribution
* Most configurable but also most adaptive

